PID Controller Design for FES Applied to Ankle Muscles in Neuroprosthesis for Standing Balance

نویسندگان

  • Hossein Rouhani
  • Michael Same
  • Kei Masani
  • Ya Qi Li
  • Milos R. Popovic
چکیده

Closed-loop controlled functional electrical stimulation (FES) applied to the lower limb muscles can be used as a neuroprosthesis for standing balance in neurologically impaired individuals. The objective of this study was to propose a methodology for designing a proportional-integral-derivative (PID) controller for FES applied to the ankle muscles toward maintaining standing balance for several minutes and in the presence of perturbations. First, a model of the physiological control strategy for standing balance was developed. Second, the parameters of a PID controller that mimicked the physiological balance control strategy were determined to stabilize the human body when modeled as an inverted pendulum. Third, this PID controller was implemented using a custom-made Inverted Pendulum Standing Apparatus that eliminated the effect of visual and vestibular sensory information on voluntary balance control. Using this setup, the individual-specific FES controllers were tested in able-bodied individuals and compared with disrupted voluntary control conditions in four experimental paradigms: (i) quiet-standing; (ii) sudden change of targeted pendulum angle (step response); (iii) balance perturbations that simulate arm movements; and (iv) sudden change of targeted angle of a pendulum with individual-specific body-weight (step response). In paradigms (i) to (iii), a standard 39.5-kg pendulum was used, and 12 subjects were involved. In paradigm (iv) 9 subjects were involved. Across the different experimental paradigms and subjects, the FES-controlled and disrupted voluntarily-controlled pendulum angle showed root mean square errors of <1.2 and 2.3 deg, respectively. The root mean square error (all paradigms), rise time, settle time, and overshoot [paradigms (ii) and (iv)] in FES-controlled balance were significantly smaller or tended to be smaller than those observed with voluntarily-controlled balance, implying improved steady-state and transient responses of FES-controlled balance. At the same time, the FES-controlled balance required similar torque levels (no significant difference) as voluntarily-controlled balance. The implemented PID parameters were to some extent consistent among subjects for standard weight conditions and did not require prolonged individual-specific tuning. The proposed methodology can be used to design FES controllers for closed-loop controlled neuroprostheses for standing balance. Further investigation of the clinical implementation of this approach for neurologically impaired individuals is needed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Closed-Loop Control of FES-Assisted Arm-Free Standing in Individuals with Spinal Cord Injury: A Feasibility Study

Objectives: The purpose of the present study was to show that the design of a neuroprosthesis for unsupported (arm-free) standing is feasible. We review findings suggesting that a closed-loop controlled functional electrical stimulation (FES) system should be able to facilitate arm-free quiet standing in individuals with spinal cord injury (SCI). Particularly, this manuscript identifies: 1) a c...

متن کامل

Optimizing control motion of a human arm With PSO-PID controller

Functional electrical stimulation (FES) is the most commonly used system for restoring function after spinal cord injury (SCI). In this study, we used a model consists of a joint, two links with one degree of freedom, and two muscles as flexor and extensor of the joint, which simulated in MATLAB using SimMechanics and Simulink Toolboxes. The muscle model is based on Zajac musculotendon actuator...

متن کامل

Balance strategies in athletes with chronic ankle instability, Coper and healthy athletes while standing on one leg

Ankle sprain is one of the most commonly damaged lower extremities. More than 70% of people with ankle sprain experience chronic ankle instability. However, some people are well adapted to this damage (Coper people) and do not suffer from chronic ankle instability. The aim of this study was to compare EMG activity of the selected involved muscles in balance control strategies in athletes with c...

متن کامل

Generating Reliable and Predictable Lower-Limb Torque Vectors using Functional Electrical Stimulation

Generating Reliable and Predictable Lower-Limb Torque Vectors using Functional Electrical Stimulation Egor Sanin Master of Applied Science Graduate Department of Mechanical and Industrial Engineering University of Toronto 2011 Recovery of the ability to maintain balance during standing is one of the primary and essential goals of rehabilitation programs for individuals with Spinal Cord Injury (...

متن کامل

Design of Fuzzy Controller of the Cycle-to-Cycle Control for Swing Phase of Hemiplegic Gait Induced by FES

The goal of this study was to design a practical fuzzy controller of the cycle-to-cycle control for multi-joint movements of swing phase of functional electrical stimulation (FES) induced gait. First, we designed three fuzzy controllers (a fixed fuzzy controller, a fuzzy controller with parameter adjustment based on the gradient descent method, and a fuzzy controller with parameter adjustment b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2017